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Abstract

Poultry is a major reservoir for foodborne Salmonella serovars. Salmonella Typhimurium, Salmonella Enteritidis,
Salmonella Heidelberg, Salmonella Kentucky, and Salmonella Senftenberg are the most prevalent serovars in U.S.
poultry. Information concerning the interactions between different Salmonella species and host cells in poultry is
lacking. In the present study, the above mentioned Salmonella serovars were examined for invasion, intracellular
survival, and their ability to modulate oxidative burst and nitric oxide (NO) responses in chicken macrophage
HD11 cells. All Salmonella serovars demonstrated similar capacity to invade HD11 cells. At 24 h post-infection, a
36–43% reduction of intracellular bacteria, in log10(CFU), was observed for Salmonella Typhimurium, Salmonella
Heidelberg, Salmonella Kentucky, and Salmonella Senftenberg, whereas a significantly lower reduction (16%) was
observed for Salmonella Enteritidis, indicating its higher resistance to the killing by HD11 cells. Production of NO
was completely diminished in HD11 cells infected with Salmonella Typhimurium and Salmonella Enteritidis, but
remained intact when infected with Salmonella Heidelberg, Salmonella Kentucky, and Salmonella Senftenberg.
Phorbol myristate acetate-stimulated oxidative burst in HD11 cells was greatly impaired after infection by each
of the five serovars. When newly hatched chickens were challenged orally, a high rate (86–98%) of systemic
infection (Salmonella positive in liver/spleen) was observed in birds challenged with Salmonella Typhimurium,
Salmonella Enteritidis, Salmonella Heidelberg, and Salmonella Kentucky, while only 14% of the birds were Sal-
monella Senftenberg positive. However, there was no direct correlation between systemic infection and in vitro
differential intracellular survival and modulation of NO response among the tested serovars.

Introduction

Salmonella are one of the leading causes of food-
borne illness worldwide (Scallan et al., 2011). In chickens,

infections with host specific serovar Salmonella Gallinarum
and Salmonella Pullorum cause septicemia fowl typhoid and
pullorum disease, respectively (Barrow and Freitas Neto,
2011), whereas infections with non-host-specific serovars such
as Salmonella Typhimurium, Salmonella Enteritidis, and Sal-
monella Heidelberg generally display no clinical symptoms.
However, these non-host-specific poultry serovars account
for the majority of clinical isolates in human salmonellosis.
Although Salmonella Kentucky and Salmonella Senftenberg are
not commonly associated with human salmonellosis, they,
together with Salmonella Typhimurium, Salmonella Enteritidis,

and Salmonella Heidelberg, are the most common serovars
isolated from U.S. poultry (CDC, 2008; FDA, 2010). Salmonella
Senftenberg, a serovar that is more resistant to the environ-
mental stresses, is frequently isolated from hatching houses
and raw feed materials, and is adapted to colonize and persist
in poultry houses (Liu et al., 1969; Bailey et al., 2001; Pedersena
et al., 2008). In the last decade, significant progress has been
made in the knowledge of Salmonella invasion and pathogenesis
in mammalian hosts, most of which are derived from studies
based on the murine model of Salmonella Typhimurium infec-
tion (Haraga et al., 2008; Malik-Kale et al., 2011). Colonization by
Salmonella in poultry has been extensively studied and well
documented (Foley et al., 2011); however, most are epidemio-
logical investigations focused on prevalence. Information re-
garding Salmonella invasion and colonization mechanisms and
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interactions with host cells in chickens is limited and poorly
defined (Boyd et al., 2007; Lillehoj et al., 2007; Chappell et al.,
2009; Wisner et al., 2010, 2011).

Chicken macrophages play a critical role in the defense
against microbial infection, in which they detect, phagocytize,
and produce microbicidal substances, including reactive
radical oxygen species (ROS), nitric oxide (NO), lysozyme,
and proteolytic enzymes, to kill the infectious agents (Oka-
mura et al., 2005; Withanage et al., 2005; Babu et al., 2006).
Robust macrophage functionality is associated with increased
resistance to systemic spread (Wigley et al., 2006) and intes-
tinal colonization (Sun et al., 2008) by Salmonella. However,
the role of macrophages in controlling Salmonella infection
and the interaction between Salmonella and macrophages in
chickens are much less studied and remain mostly unclear.

In the present study, cell invasion, intracellular survival,
and modulation of antimicrobial activity (NO and oxidative
burst response) in chicken macrophage HD11 cells of the
above mentioned five serovars were examined. Additionally,
systemic infection by these five serovars in newly hatched
chickens was also investigated.

Materials and Methods

Bacteria

Primary poultry isolates Salmonella Typhimurium and
Salmonella Enteritidis were obtained from the National Ve-
terinary Services Laboratory (Ames, IA) and were resistant to
novobiocin–nalidixic acid (Kogut et al., 1995). Salmonella
Heidelberg, Salmonella Kentucky, and Salmonella Senftenberg
used in this study were field isolates from broilers and were
susceptible to novobiocin–nalidixic acid. All strains were
susceptible to gentamicin. Salmonella from stocks were cul-
tured overnight at 41�C in a Tryptic Soy Broth (TSB; Becton,
Dickinson, and Company, Franklin Lakes, NJ) and the over-
night cultures were transferred to a fresh TSB and cultured for
4 h to reach an exponential growth phase, and the bacteria
were collected, washed, and resuspended in phosphate-
buffered saline (PBS) at a final concentration of *2 · 109

colony-forming unit (CFU)/mL. Heat-killed Salmonella (HKS)
were prepared by incubating the bacterial suspension at 75�C
water bath for 15 min.

Chickens

Chickens (Hy-Line W36) were obtained from Hy-Line
International (Bryan, TX) on the day-of-hatch. Birds were
placed in floor pens with pine shavings in a controlled en-
vironment (biosafety level 2) and provided ad libitum access
to water and a balanced unmedicated corn-soybean based
diet with nutrient rations meeting or exceeding the recom-
mendations of the National Research Council (NRC, 1994).
The experiments comply with the Animal Care and Use
Experimental Animal Protocol (Southern Plains Agricultural
Research Center, Agriculture Research Service, U.S. De-
partment of Agriculture).

HD11 Cells

The MC29 virus–transformed chicken macrophage cell line
HD11 (Beug et al., 1979) were maintained in complete
Dulbecco’s Modified Eagles Medium (DMEM; Invitrogen,
Grand Island, NY) containing 10% chicken serum, antibiotics

(100 U penicillin/mL and 100 lg streptomycin/mL), and
1.5 mM l-glutamine (Sigma, St. Louis, MO) at 39�C, 5% CO2,
and 95% humidity. Aliquots of cell suspension (2 · 106 cells/
mL) were seeded into each well at 100 lL/well for 96-well
optical bottom black plate (Nalge Nunc International,
Rochester, NY) and 500 lL/well for 24-well plate (Becton
Dickinson Biosciences, San Jose, CA) and allowed to grow to
about 85% confluence (*36 h) before being used for assays.
The 96-well plates were used for oxidative burst assay, and
the 24-well plates were used for the cell invasion and the NO
production assays.

Cell invasion and intracellular viability assay

Prior to infection, the culture medium was removed and
cells were washed once and replaced with 200 lL of plain
DMEM (without chicken serum and other additives). Ali-
quots of 50 lL of Salmonella suspensions (*2 · 109 CFU/mL)
were added to each well with four replicate wells for each
serovar and incubated for 1 h at 39�C in a 5% CO2 humidified
incubator. At 1 h post-infection (hpi), the infection medium
was removed and the cells were washed once and treated
with 100 lg/mL of gentamicin sulfate in complete DMEM for
1 h to kill extracellular bacteria. After gentamicin treatment,
infected cells were washed twice with PBS, lysed for 10 min in
300 lL of 1% Triton X-100 (in PBS). After lysis, 700 lL of PBS
was added to each well and mixed thoroughly. Serial 1:10
dilutions were spread onto Difco’s xylose-lysine tergitol 4
(XLT4) agar (Becton, Dickinson, and Company) plates and
incubated at 41�C for 24 h. Colonies were counted to deter-
mine the CFU of intracellular bacteria at 2 hpi. Similarly, in-
tracellular viable bacterial CFU was determined at 24 hpi after
an additional culture of the infected cells for 22 h in the me-
dium containing 20 lg/mL of gentamicin sulfate.

NO production assay

Nitrite, a stable metabolite of NO, produced by activated
macrophages was measured by the Greiss assay (Green et al.,
1982). HD11 cells in 24-well plates were treated, in four rep-
licates, with live (prepared in the same way as above) or HKS
as described in the killing assay. After 24 h of incubation, ni-
trite concentrations in the culture media were determined as
previously described (He et al., 2009).

Phorbol myristate acetate (PMA)–stimulated
oxidative burst

Oxidative burst of HD11 cells was measured as described
(He et al., 2005). To evaluate the effect of Salmonella infection
on oxidative burst of HD11 cells, PMA (Sigma) stimulated
oxidative burst was measured in both Salmonella-infected and
HKS-treated HD11 cells. The cells were first treated in plain
DMEM with 10 lL of live or HKS suspensions (*2 · 109 CFU)
in a final volume of 50 lL/well at 39�C for 1 h. Following the
treatment, the cells were washed and stimulated in plain
DMEM with PMA (0.5 lg/mL) in a final volume of 100 lL/
well containing 10 lg/mL of 2¢,7¢-dichlorfluorescein-diacetate
(DCFH-DA; Sigma) and 100 lg/mL of gentamicin sulfate for
1 h at 39�C in 5% CO2 and 95% humidity. The relative fluo-
rescent units (RFU) at the end of incubation were measured
(485/530 nm) using Genios Plus Plate Reader (Tecan US Inc.,
Durham, NC).
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In vivo organ invasion

Day-old chickens, 25 per group, were orally challenged
with 0.5 mL of each different Salmonella serovar (*5 · 108

CFU/bird) and housed in separated rooms. At 4 days post-
infection (dpi), chickens were euthanized with CO2,and liver
and spleen were aseptically removed from each chicken and
cultured as a combined sample in tetrathionate broth over-
night (18–24 h) at 41�C according to guidelines of the U.S.
Department of Agriculture (USDA, 1989). After incubation,
aliquots of 10 lL of broth were streaked on XLT4 plates and
incubated for 24 h at 41�C. Two independent experiments
were conducted at different dates, and a total of 50 chickens
were used for each treatment group.

Statistical analysis

At least three independent experiments for NO, oxidative
burst, and invasion, and two separate experiments for organ
invasion were conducted. Statistical difference was deter-
mined at the level of p < 0.05 by Student’s t-test using
SigmaStat software ( Jandel Corp., Richmond, CA).

Results

Differential modulation of NO production in HD11
cells by Salmonella serovars

Salmonella infection–induced NO production in HD11 cells
was serovar-dependent (Fig. 1A): Salmonella Typhimurium
and Salmonella Enteritidis induced little or no output of NO,
while Salmonella Heidelberg, Salmonella Kentucky, and Sal-
monella Senftenberg stimulated significant amounts of NO
production. This inhibition of NO production in HD11 cells
was observed only in treatments with live Salmonella Typhi-
murium and Salmonella Enteritidis; HD11 cells stimulated
with HKS showed a strong NO production regardless of the
Salmonella serovar (Fig. 1B).

Down-regulation of HD11 cell oxidative burst potential
by intracellular Salmonella

To examine the effect of intracellular Salmonella on the ox-
idative burst capacity of HD11 cells, PMA was used to stim-
ulate oxidative burst in HD11 cells infected with Salmonella or
treated with HKS. After invasion, all Salmonella serovars tes-
ted significantly diminished the oxidative burst potential of
HD11 cells and rendered the macrophages irresponsive to
PMA stimulation (Fig. 2A). Metabolically inhibition by in-
tracellular Salmonella was the most likely cause for the loss of
oxidative response of Salmonella-infected cells to PMA stim-
ulation, since HD11 cells pretreated with HKS in an identical
manner displayed no inhibitory effect on oxidative burst re-
sponse to a subsequent stimulation with PMA (Fig. 2B).

Cell invasion and intracellular survival in HD11
cells by Salmonella

All Salmonella serovars demonstrated similar capacity
( p ‡ 0.05) to invade HD11 cells as demonstrated by the CFU at
2 hpi, even though Salmonella Typhimurium and Salmonella
Enteritidis invasion was numerically greater than Salmonella
Heidelberg, Salmonella Kentucky, and Salmonella Senftenberg
(Table 1). The viability of Salmonella Enteritidis at 24 hpi,
however, was significantly higher ( p < 0.05) than that of

Salmonella Typhimurium, Salmonella Heidelberg, Salmonella
Kentucky, and Salmonella Senftenberg, indicating that Salmo-
nella Enteritidis was the most resistant to intracellular killing
by HD11 cells among the five serovars.

Systemic invasion by Salmonella in neonatal chickens

Systemic infection in young chickens by these five Salmo-
nella serovars was investigated by examining the presence of
Salmonella in the liver/spleen of challenged birds at 4 dpi
(Table 2). A high percentage (86–98%) of positive birds was
observed in groups infected with Salmonella Typhimurium,
Salmonella Enteritidis, Salmonella Heidelberg, and Salmonella
Kentucky, whereas only 14% of the birds were positive in the
Salmonella Senftenberg challenged group. The unchallenged
control birds were all Salmonella negative.

Discussion

Survival inside the macrophage is essential for Salmonella
virulence and systemic infection (Fields et al., 1986; Schwan

FIG. 1. Effect of Salmonella infection on nitric oxide (NO)
production in HD11 cells. HD11 cells were infected with Sal-
monella for 1 h in 24-well plates at 39�C in a 5% CO2 humidified
incubator. At 1 h post-infection (hpi), extracellular Salmonella
were killed by incubation with media containing 100 lg/mL of
gentamicin sulfate for 1 h; the cells were washed and then cul-
tured for an additional 22 h in a medium containing 20 lg/mL
of gentamicin sulfate; and nitrite contents in cell culture media
were determined. Treatment with heat-killed Salmonella (HKS)
was performed identically as with live Salmonella. (A) HD11
infected with live Salmonella. (B) HD11 treated with HKS. ST,
Salmonella Typhimurium; SE, Salmonella Enteritidis; SK, Salmo-
nella Kentucky; SH, Salmonella Heidelberg; SS, Salmonella Senf-
tenberg. Different letters indicate that the difference between
these groups is statistically significant ( p < 0.05).
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et al., 2000; Guiney, 2005). Salmonella virulence depends at
least partially on the type III secretion system (T3SS), which
secrets and delivers nearly 40 different virulence effectors into
host cells, to facilitate invading, surviving, and replicating
within host cells (Haraga et al., 2008; Ibarra et al., 2009; Malik-
Kale et al., 2011). To defend against the host cell antimicrobial
defense mechanisms, Salmonella produce effector proteins
which manipulate host cells to delay the phagolysosomal
maturation and hence avoid exposure to lysosomal contents
(Haraga et al., 2008) and secret various metabolic enzymes
which neutralize the antimicrobial effect of free radicals ox-
ygen and nitrogen species (ROS and RNS) (Aussel et al., 2011;
Henard and Vázquez-Torres, 2011; Slauch, 2011).

Professional phagocytes generate ROS in the process of an
oxidative burst during phagocytosis of microbes or in re-
sponse to stimulation by microbial components (Fang, 2011).
ROS production in response to microbe and microbial com-
ponent stimulation play a critical role in controlling microbial
infection (Ogier-Denis et al., 2008; Lam et al., 2010). The exact
role of ROS in controlling intracellular Salmonella in macro-
phages is debatable (Fang, 2011), since Salmonella carry
abundant enzymes (catalases, peroxiredoxins, superoxide
dismutases) to neutralize the effect of ROS (Aussel et al., 2011;
Fang, 2011). PMA is a protein kinase C activator and stimu-
lates a strong oxidative burst in chicken phagocytes (He et al.,
2005). The effect of intracellular Salmonella on the oxidative
burst response of HD11 cells to PMA stimulation has not been
reported and therefore was examined in the present study.
Macrophage HD11 cells infected with the five Salmonella
serovars showed severely impaired ROS response to PMA
stimulation as compared to the non-infected cells, while the
cells treated identically with dead Salmonella (HKS) demon-
strated a normal ROS response to PMA. The lack of ROS re-
sponse to PMA stimulation in Salmonella-infected HD11 cells
is likely caused by intracellular Salmonella which may inhibit
phagocyte NADPH oxidase activity and metabolically neu-
tralize the ROS products. Our results clearly indicate that
Salmonella serovars are well adapted to evade the ROS-
mediated killing in macrophage. Although the ROS-mediated
direct killing of intracellular Salmonella might be limited in
chicken macrophages as our results suggest, accumulated
evidence suggests that ROS can act as signaling molecules to
indirectly assert an antimicrobial role. For example, ROS have
been reported to activate MAP kinase and transcription fac-
tors NF-jB and AP-1, up-regulate inflammatory cytokine and

FIG. 2. Effect of Salmonella infection on Phorbol myristate
acetate (PMA)–stimulated oxidative burst in HD11 cells.
HD11 cells were infected with Salmonella or treated with
heat-killed Salmonella (HKS) for 1 h in 96-well optical bottom
black plates at 39�C in a 5% CO2 humidified incubator. At 1 h
post-infection (hpi), the cells were washed and stimulated
with PMA (0.5 lg/mL) in a final volume of 100 lL/well
containing 10 lg/mL of DCFH-DA and 100 lg/mL of gen-
tamicin sulfate for 1 h. The relative fluorescent units (RFU) at
the end of incubation were measured (485/530 nm). (A)
HD11 infected with live Salmonella. (B) HD11 treated with
HKS. ST, Salmonella Typhimurium; SE, Salmonella Enteritidis;
SK, Salmonella Kentucky; SH, Salmonella Heidelberg; SS,
Salmonella Senftenberg. Different letters indicate that the
difference between the groups is statistically significant
( p < 0.05).

Table 1. Intracellular Survival of Salmonella

in HD11 Cells
a

Serovar CFU (2 hpi) CFU (24 hpi)
Reduction

(%)

Salmonella
Typhimurium

6.52 – 0.47 3.63b – 0.40 43.29b – 3.79

Salmonella Enteritidis 6.63 – 0.44 5.60c – 0.25 16.40c – 6.94
Salmonella Kentucky 5.85 – 0.51 3.74b – 0.78 35.98b – 13.32
Salmonella Heidelberg 5.93 – 0.43 3.66b – 0.46 37.92b – 4.68
Salmonella

Senftenberg
5.95 – 0.35 3.79b – 0.61 35.70b – 8.00

aHD11 cells were infected with Salmonella at 2 · 109 CFU/mL for
1 h at 39�C in a 5% CO2 humidified incubator and intracellular viable
Salmonella (CFU in log10 scale) at 2 and 24 h post-infection (hpi) were
counted. Data are mean – standard deviations of CFU/well. Reduc-
tion (%) = {[CFU (2 hpi) – CFU (24 hpi)]/CFU (2 hpi)}/100. Different
letters indicate that the differences between these groups are
statistically significant ( p < 0.05).

Table 2. Organ Invasion by Salmonella

in Newly Hatched Chickens
a

Serovar Trial 1 Trial 2 Mean – SD

Salmonella Typhimurium 19/25 24/25 86 – 14
Salmonella Enteritidis 25/25 23/25 96 – 6
Salmonella Kentucky 24/25 25/25 98 – 3
Salmonella Heidelberg 24/25 24/25 96 – 0
Salmonella Senftenberg 3/25 4/25 14 – 3

aDay-old chickens, 25 per group, were orally challenged with
different Salmonella serovar (*5 · 108 CFU/bird). At 4 days post-
infection (dpi), chickens were euthanized, and liver and spleen were
removed to test for organ invasion by Salmonella. Data in columns for
Trials 1 and 2 are Salmonella-positive birds in each group at 4 dpi.
Data in column for mean – SD are means and standard deviations of
the Salmonella-positive birds (%) in each group of the two trials.
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chemokine expression, and induce the formation of autop-
hagy (Torres and Forman, 2003; Closa and Folch-Puy, 2004;
Huang et al., 2011). Activation of these cellular functions plays
a critical role in controlling intracellular Salmonella (Ro-
senberger and Finlay, 2002; Sahlberg et al., 2007; Jones et al.,
2008; Deretic, 2011).

NO response to microbial stimulation is an important in-
nate immune function of macrophages and plays a critical role
in controlling the proliferation of intracellular bacterial path-
ogens such as Salmonella Typhimurium (Mastroeni et al., 2000;
Alam et al., 2002; 2008). However, virulent factors secreted via
Salmonella T3SS can suppress iNOS activity (Das et al., 2009)
and prevent iNOS-containing vesicle trafficking to phago-
somes, hence limiting exposure of Salmonella to RNS (Chak-
ravortty et al., 2002). Additionally, Salmonella possess three
major enzymes (flavohemoglobin Hmp, flavorubredoxin
NorV, and cytochrome c nitrite reductase NrfA) that can de-
toxify NO under different environmental conditions (Bang
et al., 2006; Mills et al., 2008). Previously, infection with Sal-
monella Typhimurium and Salmonella Enteritidis has been
shown to induce NO production in chicken macrophages
(Okamura et al., 2005; Withanage et al., 2005; Babu et al., 2006).
However, our results show that NO production in HD11 cells
was completely inhibited by infection with Salmonella En-
teritidis and only minor amounts of NO was produced in cells
infected with Salmonella Typhimurium. Infection of HD11
cells with Salmonella Heidelberg, Salmonella Kentucky, and
Salmonella Senftenberg induced large amounts of NO. The
results demonstrate a dramatic difference in their ability to
modulate host cell NO response among these wild-type Sal-
monella serovars. The lack of or diminished NO response in
HD11 cells to Salmonella Typhimurium and Salmonella En-
teritidis infection is probably due to the inhibition on iNOS or
the metabolic detoxification of NO, since heat-killed Salmo-
nella Typhimurium and Salmonella Enteritidis were able to
induce large quantities of NO comparable to the levels in-
duced by the other three serovars. The exact mechanism that
enables Salmonella Typhimurium and Salmonella Enteritidis to
prevent NO production in HD11 cells is not clear and needs to
be further investigated. The discrepancy in NO induction by
Salmonella Typhimurium and Salmonella Enteritidis infection
between this study and previous studies (Okamura et al.,
2005; Withanage et al., 2005; Babu et al., 2006) cannot be
readily explained and may be due to different conditions
under which these experiments were conducted.

There was no difference in the rate of internalization of
Salmonella among the serovars used in this study. Within
24 hpi, HD11 cells were able to limit intracellular Salmonella
growth and achieved reduction of viable intracellular Salmo-
nella of all serovars tested. However, Salmonella Enteritidis
had the highest viability at 24 hpi among the tested serovars,
indicating that Salmonella Enteritidis was the most resistant
against macrophage-mediated bacterial killing. These results
provide supporting evidence to an epidemiological observa-
tion that Salmonella Enteritidis is more adapted to cause sys-
temic infections in chickens (Foley et al., 2011). There was no
apparent indication that the ability of Salmonella to down-
regulate ROS and RNS responses provided an advantage in
survival within chicken macrophages, since Salmonella Ty-
phimurium had a similar, if not the lowest, viability among
the five tested serovars despite the fact that it almost com-
pletely abrogated NO production in HD11 cells. Therefore,

our results indicate that direct killing by ROS or RNS may not
play a determinant role in intracellular survival of Salmonella
in chicken macrophages.

The ability of Salmonella to invade via the intestine and
spread systemically plays an important role in Salmonella
colonization of reproductive organs, a main cause for internal
contamination of eggs (Gast et al., 2004). Systemic infection
and reproductive organ colonization by serovars Salmonella
Enteritidis, Salmonella Typhimurium, and Salmonella Heidel-
berg has been previously reported (Gantois et al., 2008).
However, the present study was the first to report that Sal-
monella Kentucky is capable of causing systemic infection in
liver and spleen through intestinal invasion in young chick-
ens. It is interesting to note that chickens challenged with
Salmonella Senftenberg had an exceptionally low rate (14%) of
systemic infection as compared to chickens challenged with
other serovars (86–98%). Although Salmonella Senftenberg has
been reported to persist in and frequently isolated from
poultry hatching houses, farm houses, and raw feed materials
(Liu et al., 1969; Bailey et al., 2001; Kim et al., 2007; Pedersena
et al., 2008), it remains a less prevalent strain in chicks, hens,
and poultry products. Our results demonstrated that Salmo-
nella Senftenberg lacks the ability to attain systemic infection,
suggesting this strain is deficient in its ability to invade.

In summary, we have examined the five most prevalent
Salmonella serovars in U.S. poultry for intracellular survival
and their ability to modulate antimicrobial activity in chicken
macrophage HD11 cells. Intracellular Salmonella impaired the
oxidative burst response of HD11 to PMA stimulation. In-
fection with Salmonella Typhimurium and Salmonella En-
teritidis, but not Salmonella Heidelberg, Salmonella Kentucky,
and Salmonella Senftenberg, abolished NO production in
HD11 cells. Serovar Salmonella Enteritidis was best adapted to
survive inside HD11 cells among the tested serovars. Newly
hatched chickens were vulnerable to systemic infection by
Salmonella Typhimurium, Salmonella Enteritidis, Salmonella
Heidelberg, and Salmonella Kentucky, but not Salmonella
Senftenberg. These results demonstrate the different cap-
abilities to modulate the immune response in chicken mac-
rophages among Salmonella serovars; however, further
investigations are needed to identify factors that control in-
tracellular survival and systemic infection.
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